From Philosophical to Industrial Logic

Moshe Y. Vardi

Rice University
Thread I: Entscheidungsproblem

Entscheidungsproblem (The Decision Problem) [Hilbert-Ackermann, 1928]: Decide if a given first-order sentence is valid (dually, Satisfiable).

Church-Turing Theorem, 1936: The Decision Problem is unsolvable.

Classification Project: Identify decidable fragments of first-order logic.
- Monadic Class
- Bernays-Schönfinkel Class
- Ackermann Class
- Gödel Class (w/o =)
Monadic Logic

Monadic Class: First-order logic with $=$ and monadic predicates – captures *syllogisms*.

- $(\forall x)P(x), (\forall x)(P(x) \rightarrow Q(x)) \models (\forall x)Q(x)$

[Löwenheim, 1915]: The Monadic Class is decidable.
- *Proof:* Bounded-model property – if a sentence is satisfiable, it is satisfiable in a structure of bounded size.
- *Proof technique:* quantifier elimination.

Monadic Second-Order Logic: Allow second-order quantification on monadic predicates.

[Skolem, 1919]: Monadic Second-Order Logic is decidable – via bounded-model property and quantifier elimination.

Question: What about $<$?
Thread II: Logic and Automata

Two paradigms in logic:

- **Paradigm I: Logic** – declarative formalism
 - Specify properties of mathematical objects, e.g., \((\forall x, y, x)(\text{mult}(x, y, z) \leftrightarrow \text{mult}(y, x, z))\) – commutativity.

- **Paradigm II: Machines** – imperative formalism
 - Specify computations, e.g., Turing machines, finite-state machines, etc.

Surprising Phenomenon: Intimate connection between logic and machines
Nondeterministic Finite Automata

\[A = (\Sigma, S, S_0, \rho, F) \]

- **Alphabet:** \(\Sigma \)
- **States:** \(S \)
- **Initial states:** \(S_0 \subseteq S \)
- **Nondeterministic transition function:** \(\rho : S \times \Sigma \rightarrow 2^S \)
- **Accepting states:** \(F \subseteq S \)

Input word: \(a_0, a_1, \ldots, a_{n-1} \)

Run: \(s_0, s_1, \ldots, s_n \)
- \(s_0 \in S_0 \)
- \(s_{i+1} \in \rho(s_i, a_i) \) for \(i \geq 0 \)

Acceptance: \(s_n \in F \)

Recognition: \(L(A) \) – words accepted by \(A \).

Example:

\[\quad \]

- ends with 1’s

Fact: NFAs define the class \(Reg \) of regular languages.
Logic of Finite Words

View finite word \(w = a_0, \ldots, a_{n-1} \) over alphabet \(\Sigma \) as a mathematical structure:

- Domain: \(0, \ldots, n - 1 \)
- Binary relation: \(<\)
- Unary relations: \(\{ P_a : a \in \Sigma \} \)

First-Order Logic (FO):

- Unary atomic formulas: \(P_a(x) \) \((a \in \Sigma)\)
- Binary atomic formulas: \(x < y \)

Example: \((\exists x)((\forall y)(\neg(x < y)) \land P_a(x)) \) – last letter is \(a \).

Monadic Second-Order Logic (MSO):

- Monadic second-order quantifier: \(\exists Q \)
- New unary atomic formulas: \(Q(x) \)
NFA vs. MSO

Theorem [Büchi, Elgot, Trakhtenbrot, 1957-8 (independently)]: MSO ≡ NFA

- Both MSO and NFA define the class Reg.

Proof: Effective

- From NFA to MSO ($A \mapsto \varphi_A$)
 - Existence of run – existential monadic quantification
 - Proper transitions and acceptance - first-order formula

- From MSO to NFA ($\varphi \mapsto A_{\varphi}$): closure of NFAs under
 - Union – disjunction
 - Projection – existential quantification
 - Complementation – negation
NFA Complementation

Run Forest of A on w:

- Roots: elements of S_0.
- Children of s at level i: elements of $\rho(s, a_i)$.
- Rejection: no leaf is accepting.

Key Observation: collapse forest into a DAG – at most one copy of a state at a level; width of DAG is $|S|$.

Subset Construction Rabin-Scott, 1959:

- $A^c = (\Sigma, 2^S, \{S_0\}, \rho^c, F^c)$
- $F^c = \{T : T \cap F = \emptyset\}$
- $\rho^c(T, a) = \bigcup_{t \in T} \rho(t, a)$
- $L(A^c) = \Sigma^* - L(A)$
Complementation Blow-Up

\[A = (\Sigma, S, S_0, \rho, F), \; |S| = n \]
\[A^c = (\Sigma, 2^S, \{S_0\}, \rho^c, F^c) \]

Blow-Up: \(2^n\) upper bound

Can we do better?

Lower Bound: \(2^n\)
Sakoda-Sipser 1978, Birget 1993

\[L_n = (0 + 1)^*1(0 + 1)^{n-1}0(0 + 1)^* \]
- \(L_n\) is easy for NFA
- \(\overline{L_n}\) is hard for NFA
NFA Nonemptiness

Nonemptiness: \(L(A) \neq \emptyset \)

Nonemptiness Problem: Decide if given \(A \) is nonempty.

Directed Graph \(G_A = (S, E) \) of NFA \(A = (\Sigma, S, S_0, \rho, F) \):

- **Nodes**: \(S \)
- **Edges**: \(E = \{(s, t) : t \in \rho(s, a) \text{ for some } a \in \Sigma\} \)

Lemma: \(A \) is nonempty iff there is a path in \(G_A \) from \(S_0 \) to \(F \).

- Decidable in time linear in size of \(A \), using *breadth-first search* or *depth-first search*.
MSO Satisfiability – Finite Words

Satisfiability: $\text{models}(\psi) \neq \emptyset$

Satisfiability Problem: Decide if given ψ is satisfiable.

Lemma: ψ is satisfiable iff A_ψ is nonempty.

Corollary: MSO satisfiability is decidable.
- Translate ψ to A_ψ.
- Check nonemptiness of A_ψ.

Complexity:
- **Upper Bound**: Nonelementary Growth
 \[\underbrace{2 \cdot 2 \cdot \ldots \cdot 2}_n \]
 (tower of height $O(n)$)
- **Lower Bound** [Stockmeyer, 1974]: Satisfiability of FO over finite words is nonelementary (no bounded-height tower).
Church, 1957: Use logic to specify sequential circuits.

Sequential circuits: $C = (I, O, R, f, g, R_0)$
- I: input signals
- O: output signals
- R: sequential elements
- $f : 2^I \times 2^R \rightarrow 2^R$: transition function
- $g : 2^R \rightarrow 2^O$: output function
- $R_0 \in 2^R$: initial assignment

Trace: element of $(2^I \times 2^R \times 2^O)\omega$

$t = (I_0, R_0, O_0), (I_1, R_1, O_1), \ldots$

- $R_{j+1} = f(I_j, R_j)$
- $O_j = g(R_j)$
Specifying Traces

View infinite trace $t = (I_0, R_0, O_0), (I_1, R_1, O_1), \ldots$ as a mathematical structure:

- Domain: \mathbb{N}
- Binary relation: $<$
- Unary relations: $I \cup R \cup O$

First-Order Logic (FO):

- Unary atomic formulas: $P(x)$ ($P \in I \cup R \cup O$)
- Binary atomic formulas: $x < y$

Example: $(\forall x)(\exists y)(x < y \land P(y))$ — P holds i.o.

Monadic Second-Order Logic (MSO):

- Monadic second-order quantifier: $\exists Q$
- New unary atomic formulas: $Q(x)$

Model-Checking Problem: Given circuit C and formula φ; does φ hold in all traces of C?

Easy Observation: Model-checking problem reducible to satisfiability problem — use FO to encode the “logic” (i.e., f, g) of the circuit C.
Büchi Automata

Büchi Automaton: $A = (\Sigma, S, S_0, \rho, F)$
- **Alphabet:** Σ
- **States:** S
- **Initial states:** $S_0 \subseteq S$
- **Transition function:** $\rho : S \times \Sigma \rightarrow 2^S$
- **Accepting states:** $F \subseteq S$

Input word: a_0, a_1, \ldots

Run: s_0, s_1, \ldots

- $s_0 \in S_0$
- $s_{i+1} \in \rho(s_i, a_i)$ for $i \geq 0$

Acceptance: F visited infinitely often

Fact: Büchi automata define the class ω-Reg of ω-regular languages.
Paradigm: Compile high-level logical specifications into low-level finite-state language

Compilation-Theorem: [Büchi, 1960] Given an MSO formula \(\phi \), one can construct a Büchi automaton \(A_\phi \) such that a trace \(\sigma \) satisfies \(\phi \) if and only if \(\sigma \) is accepted by \(A_\phi \).

MSO Satisfiability Algorithm:

1. \(\phi \) is satisfiable iff \(L(A_\phi) \neq \emptyset \)
2. \(L(\Sigma, S, S_0, \rho, F) \neq \emptyset \) iff there is a path from \(S_0 \) to a state \(f \in F \) and a cycle from \(f \) to itself.

Corollary [Church, 1960]: Model checking sequential circuits wrt MSO specs is decidable.

Church, 1960: “Algorithm not very efficient” (non-elementary complexity, [Stockmeyer, 1974]).
Catching Bugs with A Lasso

Figure 1: Ashutosh’s Blog, November 23, 2005
Büchi Complementation

Problem: subset construction fails!

\[
\rho(\{s\}, 0) = \{s, t\}, \rho(\{s, t\}, 0) = \{s, t\}
\]

History

- Büchi’62: doubly exponential construction.
- SVW’85: \(16^n^2\) upper bound
- Safra’88: \(n^{2n}\) upper bound
- Michel’88: \((n/e)^n\) lower bound
- KV’97: \((6n)^n\) upper bound
- FKV’04: \((0.97n)^n\) upper bound
- Yan’06: \((0.76n)^n\) lower bound
Thread IV: Temporal Logic

Prior, 1914–1969, Philosophical Preoccupations:

- **Religion**: Methodist, Presbyterian, atheist, agnostic
- **Ethics**: “Logic and The Basis of Ethics”, 1949
- **Free Will, Predestination, and Foreknowledge**:
 - “The future is to some extent, even if it is only a very small extent, something we can make for ourselves”.
 - “Of what will be, it has now been the case that it will be.”
 - “There is a deity who infallibly knows the entire future.”

Mary Prior: “I remember his waking me one night [in 1953], coming and sitting on my bed, . . ., and saying he thought one could make a formalised tense logic.”

- 1957: “Time and Modality”
Linear vs. Branching Time, A

- Prior’s first lecture on tense logic, Wellington University, 1954: linear time.

- Prior’s “Time and modality”, 1957: relationship between linear tense logic and modal logic.

- Sep. 1958, letter from Saul Kripke: “[I]n an indetermined system, we perhaps should not regard time as a linear series, as you have done. Given the present moment, there are several possibilities for what the next moment may be like – and for each possible next moment, there are several possibilities for the moment after that. Thus the situation takes the form, not of a linear sequence, but of a ’tree’. (Kripke was a high-school student, not quite 18, in Omaha, Nebraska.)
Linear vs. Branching Time, B

- **Linear time**: a system induces a set of traces

- **Specs**: describe traces

- **Branching time**: a system induces a trace tree

- **Specs**: describe trace trees
Linear vs. Branching Time, C

- Prior developed the idea into Ockhamist and Peircean theories of branching time (branching-time logic *without* path quantifiers)

Sample formula: $CKM_pM_qA MK_p M_qMK_qM_p$

- Burgess, 1978: “Prior would agree that the determinist sees time as a line and the indeterminist sees times as a system of forking paths.”
Philosophical Conundrum

- Prior:
 - Nature of course of time – branching
 - Nature of course of events – linear

- Rescher:
 - Nature of time – linear
 - Nature of course of events – branching
 - “We have ’branching in time’, not ’branching of time’”.

Linear time: Hans Kamp, Dana Scott and others continued the development of linear time during the 1960s.
Temporal and Classical Logics

Key Theorems:

- Kamp, 1968: Linear temporal logic with past and binary temporal connectives (“until” and “since”) has precisely the expressive power of FO over the integers.

- Thomas, 1979: FO over naturals has the expressive power of star-free ω-regular expressions (recall: $\text{MSO} = \omega\text{-Reg}$).

Precursors:

- Büchi, Elgot, Trakhtenbrot, 1957: On finite words, $\text{MSO} = \text{RE}$

- McNaughton & Papert, 1971: On finite words, $\text{FO} = \text{star-free-RE}$
The Temporal Logic of Programs

Precursors:

- **Prior**: “There are practical gains to be had from this study too, for example in the representation of time-delay in computer circuits”

- **Rescher & Urquhart, 1971**: applications to processes ("a programmed sequence of states, deterministic or stochastic")

“Big Bang 1” [Pnueli, 1977]:

- Future linear temporal logic (LTL) as a logic for the specification of non-terminating programs
- Temporal logic with “next” and “until”
- Model checking via reduction to MSO
Linear Temporal Logic

Linear Temporal logic (LTL): logic of temporal sequences (Pnueli, 1977)

Main feature: time is implicit

- **next** \(\varphi \): \(\varphi \) holds in the next state.
- **eventually** \(\varphi \): \(\varphi \) holds eventually
- **always** \(\varphi \): \(\varphi \) holds from now on
- **\(\varphi \) until** \(\psi \): \(\varphi \) holds until \(\psi \) holds.

\[
\pi, w \models \text{next } \varphi \text{ if } w \cdots \varphi \cdots \varphi \cdots \\
\pi, w \models \varphi \text{ until } \psi \text{ if } w \cdots \varphi \cdots \varphi \cdots \psi \cdots \
\]
Examples

• always not (CS₁ and CS₂): mutual exclusion (safety)

• always (Request implies eventually Grant): liveness

• always (Request implies (Request until Grant)): liveness

• always (always eventually Request) implies eventually Grant: liveness
Expressive Power

Gabbay, Pnueli, Shelah & Stavi, 1980: Propositional LTL has precisely the expressive power of FO over the naturals.

$LTL = FO = \text{star-free } \omega\text{-RE} < MSO = \omega\text{-RE}$

Meyer on LTL, 1980, in “Ten Thousand and One Logics of Programming”:

“The corollary due to Meyer – I have to get in my controversial remark – is that that [GPSS’80] makes it theoretically uninteresting.”
Computational Complexity

Recall: Satisfiability of FO over traces is non-elementary

Contrast with LTL:

- Wolper, 1981: LTL satisfiability is in EXPTIME.

- Sistla & Clarke, 1982: LTL satisfiability and model checking is PSPACE-complete.

Basic Technique: tableau (influenced by branching-time techniques)
“Big Bang 2” [Clarke & Emerson, 1981, Queille & Sifakis, 1982]: Model checking programs of size m wrt CTL formulas of size n can be done in time mn.

Linear-Time Response [Lichtenstein & Pnueli, 1985]: Model checking programs of size m wrt LTL formulas of size n can be done in time $m2^{O(n)}$ (tableau-based).

Seemingly:

• **Automata**: Nonelementary

• **Tableaux**: exponential
Back to Automata

Exponential-Compilation Theorem:

[V. & Wolper, 1983–1986]

Given an LTL formula φ of size n, one can construct a Büchi automaton A_{φ} of size $2^{O(n)}$ such that a trace σ satisfies φ if and only if σ is accepted by A_{φ}.

Automata-Theoretic Algorithms:

1. **LTL Satisfiability**:
 φ is satisfiable iff $L(A_{\varphi}) \neq \emptyset$ (PSPACE)

2. **LTL Model Checking**:
 $M \models \varphi$ iff $L(M \times A_{\neg \varphi}) = \emptyset$ ($m2^{O(n)}$)
Reduction to Practice

Practical Theory:

- Courcoubetis, V., Yannakakis & Wolper, 1989: Optimized search algorithm for explicit model checking
- Burch, Clarke, McMillan, Dill & Hwang, 1990: Symbolic algorithm for LTL compilation
- Clarke, Grumberg & Hamaguchi, 1994: Optimized symbolic algorithm for LTL compilation
- Gerth, Peled, V. & Wolper, 1995: Optimized explicit algorithm for LTL compilation

Implementation:

- COSPAN [Kurshan, 1983]: deterministic automata specs
- Spin [Holzmann, 1995]: Promela w. LTL:
- SMV [McMillan, 1995]: SMV w. LTL

Satisfactory solution to Church’s problem? Almost, but not quite, since LTL<MSO=ω-RE.
Enhancing Expressiveness

- Wolper, 1981: Enhance LTL with grammar operator, retaining EXPTIME-ness (PSPACE [SC’82])
- V. & Wolper, 1983: Enhance LTL with automata, retaining PSPACE-completeness
- Sistla, V. & Wolper, 1985: Enhance LTL with 2nd-order quantification, losing elementariness
- V., 1989: Enhance LTL with fixpoints, retaining PSPACE-completeness

Bottom Line: ETL (LTL w. automata) = \(\mu TL \) (LTL w. fixpoints) = MSO, and has exponential-compilation property.

Independently Kurshan, 1983—: Use \(\omega \)-automata for specification and modeling of protocols; development of COSPAN
Thread V: Dynamic and Branching-Time Logics

Dynamic Logic [Pratt, 1976]:
- The $\square \varphi$ of modal logic can be taken to mean “φ holds after an execution of a program step”.
- Dynamic modalities:
 - $\langle \alpha \rangle \varphi$ – φ holds after some execution of α,
 - $[\alpha] \varphi$ – φ holds after all executions of α.
 - $\psi \rightarrow [\alpha] \varphi$ corresponds to Hoare triple $\{\psi\} \alpha \{\varphi\}$.

Propositional Dynamic Logic [Fischer & Ladner, 1977]: *Boolean* propositions, programs – *regular expressions* over *atomic* programs.

Satisfiability [Pratt, 1978]: EXPTIME – using *tableau*-based algorithm

Branching-Time Logic

From dynamic logic back to temporal logic:
The dynamic-logic view is clearly branching; what is the analog for temporal logic?

- Ben-Ari, Manna & Pnueli, 1981: branching-time logic UB; satisfiability in EXPTIME using tableaux
- Clarke & Emerson, 1981: branching-time logic CTL; efficient model checking
- Emerson & Halpern, 1983: branching-time logic CTL* – ultimate branching-time logic

Key Idea: Prior missed *path quantifiers*
- \(\forall \text{ eventually } p \): on all possible futures, \(p \) eventually happen.
Linear vs. Branching Temporal Logics

- **Linear time:** a system generates a set of computations

- **Specs:** describe computations

- **LTL:** $always(request \rightarrow eventually\ grant)$

- **Branching time:** a system generates a computation tree

- **Specs:** describe computation trees

- **CTL:** $\forall always (request \rightarrow \forall eventually\ grant)$
Combining Dynamic and Temporal Logics

Two distinct perspectives:
- Temporal logic: state based
- Dynamic logic: action based

Symbiosis:
- Harel, Kozen & Parikh, 1980: Process Logic (branching time)
- V. & Wolper, 1983: Yet Another Process Logic (branching time)
- Harel and Peleg, 1985: Regular Process Logic (linear time)
- Henriksen and Thiagarajan, 1997: Dynamic LTL (linear time)
- Beer, Ben-David & Landver, IBM, 1998: RCTL (branching time)
- Beer, Ben-David, Eisner, Fisman, Gringauze, Rodeh, IBM, 2001: Sugar (branching time)

Distinction: RCTL and Sugar use state-based REs (no actions)
Thread VI: From LTL to PSL

Model Checking at Intel

Prehistory:

- 1990: successful feasibility study using Kurshan’s COSPAN
- 1992: a pilot project using CMU’s SMV
- 1995: an internally developed (linear time) property-specification language

History:

- 1997: Development of 2nd-generation technology started (engine and language)
- 1999: BDD-based model checker released
- 2000: SAT-based model checker released
- 2000: ForSpec (language) released
1997: (w. Fix, Hadash, Kesten, & Sananes)

V. : How about LTL?
F., H., K., & S.: Not expressive enough.

V. : How about ETL? μTL?
F., H., K., & S.: Users will object.

1998 (w. Landver)

V. : How about ETL?
L.: Users will object.
L.: How about regular expressions?
V. : They are equivalent to automata!

RELTL: LTL plus dynamic modalities, interpreted linearly – $\langle e \rangle \varphi$, $[e] \varphi$

Easy: RELTL=ETL=ω-RE

ForSpec: RELTL + hardware features (clocks and resets) [Armoni, Fix, Flaisher, Gerth, Ginsburg, Kanza, Landver, Mador-Haim, Singerman, Tiemeyer, V., Zbar]
From ForSpec to PSL

Industrial Standardization:
- Process started in 2000
- Four candidates: IBM’s Sugar, Intel’s ForSpec, Motorola’s CBV, and Verisity’s E.
- Fierce debate on linear vs. branching time

Outcome:
- Big political win for IBM (see references to PSL/Sugar)
- Big technical win for Intel
 - PSL is LTL + RE + clocks + resets
 - Branching-time extension as an acknowledgement to Sugar
 - Some evolution over time in hardware features
- Major influence on the design of SVA (another industrial standard)

Bottom Line: Huge push for model checking in industry.
Some Philosophical Points

• Science is a cathedral; we are the masons.

• There is no architect; outcome is unpredictable.

• Most of our contributions are smaller than we’d like to think.

• Even small contributions can have major impact.

• Much is forgotten and has to be rediscovered.