A Study of a Logic for Multiple-source Approximation Systems

Mohua Banerjee Md. Aquil Khan

Indian Institute of Technology Kanpur

ICLA 2009
1. Basic Concepts Related to Rough Set Theory

2. Multiple-source Approximation Systems
 - Different Notions of Lower/Upper Approximations
 - Different Notions of Definability

3. Logic for MSAS(LMSAS)
 - Axiomatization
 - Some Decidable Problems
 - Bisimulation
 - Relationship with Other Logics

4. Conclusion
Out break of some disease.

- **Totally unaffected** class → classes 1 to 8.
- **Totally affected** class → class 9.
- **Partially affected** class → class 10.

Q. Is ‘A’, a class 8 student, affected?
A. No.

Q. Is ‘B’, a class 9 student, affected?
A. Yes.

Q. Is ‘C’, a class 10 student, affected?
A. Possibly, but not certainly.
Pawlak Approximation space [Pawlak’82]

\[(U, R)\], where \(R\) is an equivalence relation on \(U\).
Pawlak Approximation space [Pawlak’82]

\((U, R)\), where \(R\) is an equivalence relation on \(U\).
Pawlak Approximation space [Pawlak’82]

(U, R), where R is an equivalence relation on U.
Mohua Banerjee, Md. Aquil Khan

A Study of a Logic for Multiple-source Approximation Systems
\begin{itemize}
\item $U := \text{Set of students}$;
\item aRb iff a and b are in the same class;
\item $X := \text{Set of affected students}$.
\end{itemize}

\begin{table}
\begin{tabular}{|c|c|c|c|c|}
\hline
U & 1 & 2 & 3 & 4 & 5 \\
\hline
6 & 7 & 8 & 9 & 10 \\
\hline
\end{tabular}
\end{table}
- $U := \text{Set of students}$;
- aRb iff a and b are in the same class;
- $X := \text{Set of affected students}$.
- $U := \text{Set of students};$
- $aRb \iff a \text{ and } b \text{ are in the same class};$
- $X := \text{Set of affected students}.$
Multiple-source Approximation Systems (MSAS)

\[\mathcal{F} := (U, \{R_i\}_{i \in \mathbb{N}}), \] where

- \(U \) is a non-empty set,
- \(\mathbb{N} \) an initial segment of the set of positive integers, and
- each \(R_i, i \in \mathbb{N} \), is an equivalence relation on the domain \(U \).

\[|\mathbb{N}| \text{ is referred to as the cardinality of } \mathcal{F} \text{ and is denoted by } |\mathcal{F}|. \]
\(\mathfrak{F} := (U, \{ R_i \}_{i \in \mathbb{N}}), \ X \subseteq U \)

Definition

- **Strong lower approximation**
 \[X_s := \bigcap_i X_{R_i}; \]

- **Weak lower approximation**
 \[X_w := \bigcup_i X_{R_i}; \]

- **Strong upper approximation**
 \[\overline{X_s} := \bigcap_i \overline{X}_{R_i}; \]

- **Weak upper approximation**
 \[\overline{X_w} := \bigcup_i \overline{X}_{R_i}; \]

For MSAS \(\mathfrak{F} := (U, \{ R \}) \)
\[X_s = X_w = X_R \text{ and } \overline{X_s} = \overline{X_w} = \overline{X_R} \]
\[X_s \subseteq X_w \subseteq X \subseteq X_s \subseteq X_w \]
$X_s \subseteq X_w \subseteq X \subseteq \overline{X_s} \subseteq \overline{X_w}$
Proposition

1. \(X \cap Y_s = X_s \cap Y_s; \quad X \cup Y_w = X_w \cup Y_w; \)
2. \(X \cap Y_s \subseteq X_s \cap Y_s; \quad X \cup Y_w \supseteq X_w \cup Y_w; \)
3. \(X^c_s = (X_w)^c; \quad X^c_w = (X_s)^c; \)
4. \(X^c_s = (X_w)^c; \quad X^c_w = (X_s)^c; \)
5. \(X_w = \overline{(X_w)_w}; \quad \overline{X_s} = (\overline{X_s})_s; \)
6. \(\overline{X_w} = (\overline{X_w})_w = (\overline{X_s})_w; \)
7. \((\overline{X_s})_w \subseteq X_w; \)
\(X \subseteq U \) is **lower definable** if \(X_s = X_w \).

\[U \]

\[(X_w)^c \]

\[X_w \setminus X_s \]

\[X_s \setminus X_w \]

\[X_w \setminus X_s \]

\[X_s \]

- **certain +ve**
- **possible +ve**
- **certain boundary**
- **possible -ve**
- **certain -ve**

\(X \) is lower definable iff the sets of +ve elements in all approximations spaces are identical.
\(X \subseteq U \) is upper definable if \(\overline{X}_s = \overline{X}_w \).

\[U \]

\[(\overline{X}_w)^c \]

\[\overline{X}_w \setminus \overline{X}_s \]

\[\overline{X}_s \setminus \overline{X}_w \]

\[\overline{X}_w \setminus \overline{X}_s \]

\[X_s \]

- certain +ve
- possible +ve
- certain boundary
- possible -ve
- certain -ve

\(X \) is upper definable iff the sets of -ve elements in all approximations spaces are identical.
\[X \subseteq U \text{ is weak definable if } \overline{X}_s = \underline{X}_w. \]

\[X \text{ is weak definable iff } X \text{ does not have certain boundary element.} \]
X ⊆ U is strong definable if \(X_s = X_w \).

\[X_w \setminus X_s \]

\[X_s \setminus X_w \]

\[X_w \setminus X_s \]

\[X_s \]

- **certain +ve**
- **possible +ve**
- **certain boundary**
- **possible -ve**
- **certain -ve**

\(X \) is strong definable iff every element of \(U \) is either certain +ve or certain -ve.
Proposition

- X is upper definable iff X^c is lower definable.

- Arbitrary union (intersection) of upper (lower) definable sets is also upper (lower) definable.
 (Collection of upper (lower) definable sets is not closed under intersection (union)).

- Collection of all strong definable sets forms a complete field of sets.
Proposition

The following are equivalent:

- X is strong definable.
- X is both lower and upper definable and X is definable in some approximation space.
- X is definable in each approximation space.
- $X_s = X_w = X = X_s = X_w$.
Language \(\mathcal{L} \)

- a non-empty countable set \(\text{Var} \) of variables,
- a (possibly empty) countable set \(\text{Con} \) of constants,
- a non-empty countable set \(\text{PV} \) of propositional variables and
- the propositional constants \(\top, \bot \).

Terms \(T \) := \(\text{Var} \cup \text{Con} \).

Wffs:= \(\top | \bot | p | \neg \alpha | \alpha \land \beta | \langle t \rangle \alpha | \forall x \alpha \)

\(p \in \text{PV}, \ t \in T, \ x \in \text{Var}, \) and \(\alpha, \beta \) are wffs.
Notations

- $\mathcal{F} \longrightarrow$ Set of all wffs;
- $\overline{\mathcal{F}} \longrightarrow$ Set of all closed wffs;
- $\text{Con}(\alpha) \longrightarrow$ Set of constants used in α;
- $\text{Var}(\alpha) \longrightarrow$ Set of variables used in α;
- $\text{FV}(\alpha) \longrightarrow$ Set of free variables used in α.
Model

\(\mathcal{M} := (\bar{\mathcal{F}}, V, \nu) \), where

- \(\bar{\mathcal{F}} := (U, \{R_i\}_{i \in \mathbb{N}}) \) is a MSAS;
- \(V : P V \rightarrow 2^U \) is a valuation function and
- \(\nu : Var \rightarrow \mathbb{N} \) is an assignment.

Let \(\alpha \in \mathcal{F} \) and \(\Gamma \subseteq \mathcal{F} \).

\(\alpha \)-Model

The model \(\mathcal{M} := (\bar{\mathcal{F}}, V, \nu) \) is said to be an \(\alpha \)-model if \(|\bar{\mathcal{F}}| \geq k \), where \(k \) is the largest integer such that \(c_k \in Con(\alpha) \).

\(\Gamma \)-Model

\(\mathcal{M} \) is a \(\Gamma \)-model, if it is an \(\alpha \)-model for each \(\alpha \in \Gamma \).
satisfiability

- $\mathcal{M}, w \models p$, if and only if $w \in V(p)$.
- $\mathcal{M}, w \models \langle c_i \rangle \alpha$, if and only if there exists w' in U such that $wR_i w'$ and $\mathcal{M}, w' \models \alpha$.
- $\mathcal{M}, w \models \langle x \rangle \alpha$, if and only if there exists w' in U such that $wR_{v(x)} w'$ and $\mathcal{M}, w' \models \alpha$.
- $\mathcal{M}, w \models \forall x \alpha$, if and only if $\mathcal{M}', w \models \alpha$, for every model $\mathcal{M}' := (\mathcal{F}, V, v')$ where the assignment v' is x-equivalent to v.

Mohua Banerjee, Md. Aquil Khan

A Study of a Logic for Multiple-source Approximation Systems
Validity

\[\models \alpha, \text{ if and only if } M, w \models \alpha, \text{ for every } \alpha\text{-model } M \text{ and object } w \text{ of } U. \]
\[\mathcal{M} := (\mathcal{F}, V, \nu) \rightarrow \text{a model.} \]

\[V(\alpha) := \{ w \in U : \mathcal{M}, w \models \alpha \}, \text{ where } \alpha \text{ is a wff involving only those } c_k \text{ which satisfy } |\mathcal{F}| \geq k \]

Rough Set Interpretation

- \(V(\langle c_i \rangle \alpha) = \overline{V(\alpha)}_{R_i} ; \)
- \(V([c_i] \alpha) = \overline{V(\alpha)}_{R_i} ; \)
- Fore \(\alpha \) which does not have free occurrence of \(x \),
 - \(V(\forall x[x] \alpha) = \overline{V(\alpha)}_{s} ; \)
 - \(V(\exists x[x] \alpha) = \overline{V(\alpha)}_{w} ; \)
 - \(V(\forall x\langle x \rangle \alpha) = \overline{V(\alpha)}_{s} ; \)
 - \(V(\exists x\langle x \rangle \alpha) = \overline{V(\alpha)}_{w} . \)
Proposition

The following are valid.

1. (a) $\exists x[x] \alpha \rightarrow \alpha$.
 (b) $\alpha \rightarrow \forall x \langle x \rangle \alpha$.

2. (a) $\forall x[x](\alpha \land \beta) \leftrightarrow \forall x[x] \alpha \land \forall x[x] \beta$.
 (b) $\exists x \langle x \rangle (\alpha \lor \beta) \leftrightarrow \exists x \langle x \rangle \alpha \lor \exists x \langle x \rangle \beta$.

3. (a) $\forall x \langle x \rangle (\alpha \land \beta) \rightarrow \forall x \langle x \rangle \alpha \land \forall x \langle x \rangle \beta$.
 (b) $\exists x[x](\alpha \lor \beta) \rightarrow \exists x[x] \alpha \lor \exists x[x] \beta$.

4. (a) $\exists x[x] \alpha \leftrightarrow \exists x[x] \exists y[y] \alpha$.
 (b) $\exists x \langle x \rangle \forall y[y] \alpha \rightarrow \exists x[x] \alpha$.

Mohua Banerjee, Md. Aquil Khan
A Study of a Logic for Multiple-source Approximation Systems
Axioms

1. All axioms of classical propositional logic.
2. $\forall x \alpha \rightarrow \alpha[t/x]$, where α admits the term t for the variable x.
3. $\forall x (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \forall x \beta)$, where the variable x is not free in α.
4. $\forall x[t] \alpha \rightarrow [t] \forall x \alpha$, where the term t and variable x are different.
5. $[t](\alpha \rightarrow \beta) \rightarrow ([t] \alpha \rightarrow [t] \beta)$.
6. $\alpha \rightarrow \langle t \rangle \alpha$.
7. $\alpha \rightarrow [t] \langle t \rangle \alpha$.
8. $\langle t \rangle \langle t \rangle \alpha \rightarrow \langle t \rangle \alpha$.
Rules of inference

\[
\forall. \quad \frac{\alpha}{\forall x \alpha} \\
\text{MP.} \quad \frac{\alpha}{\alpha \rightarrow \beta} \\
\text{N.} \quad \frac{\alpha}{[t] \alpha}
\]
Soundness

If $\not\vdash \alpha$ then $\models \alpha$

Completeness Theorem

If $\models \alpha$ then $\vdash \alpha$

Proof

- Let n is the largest integer such that c_n occurs in α.
- \mathcal{L}^n obtained from the language \mathcal{L} by restricting Con to the set $\{c_1, c_2, \ldots, c_n\}$.
- \mathcal{L}^{n+} obtained from the language \mathcal{L}^n by adding infinitely many new variables.
- $\text{Var}^+ := \{x_1, x_2, \ldots\}$ be an enumeration of the variables in \mathcal{L}^{n+}.
Proof (Contd.)

Canonical model:

- $U^C := \{ w : w$ is maximally consistent and has the \forall property in $L^{n+}\}$.
- $V^C : PV \rightarrow \mathcal{P}(U^C)$ is such that $V^C(p) := \{ w \in U^C : p \in w \}$, for $p \in PV$.
- $\nu^C : Var^+ \rightarrow \mathbb{N}$ is such that $\nu^C(x_i) := n + i$.
- $wR^C_i w'$, if and only if for every wff $[t] \alpha$ of L^{n+} with $\nu^C(t) = i$, $[t] \alpha \in w$ implies $\alpha \in w'$, where $w, w' \in U^C$.
- $\mathcal{F}^C := (U^C, \{ R^C_i \}_{i \in \mathbb{N}})$.
- $\mathcal{M}^C := (\mathcal{F}^C, V^C, \nu^C)$.
Proof (Contd.)

Proposition

Every consistent set of wffs in \mathcal{L}^n has a maximally consistent extension in \mathcal{L}^{n+}, having the \forall-property.

Truth Lemma

For any wff β in \mathcal{L}^{n+} and $w \in U^C$, $\beta \in w$ if and only if $M^C, w \models \beta$.

- $\nu^c(x) \neq \nu^c(y)$ for $x \neq y$;
- $\nu^c(x) \not\in \{1, 2, \ldots, n\}$.
Some Decidable problems

Proposition

Given a wff \(\alpha \) and an integer \(m \geq k \), where \(k \) is the largest integer such that \(c_k \in Con(\alpha) \), it is decidable if there exists an \(\alpha \)-model \(M := (\mathcal{F}, V, v) \) with \(|\mathcal{F}| = m \) such that \(\alpha \) is satisfiable in \(M \).

Proof

- \(\Sigma \xrightarrow{\text{Sub-formula closed set}} \) Sub-formula closed set such that \(r \) is the largest integer for which \(c_r \in Con(\Sigma) \).
- \(\mathcal{F} := (U, \{R_i\}_{1 \leq i \leq m}), \ m \geq r. \)
- \(V : PV \rightarrow 2^U. \)
Proof(Contd.)

- For $w, w' \in U$, $w \equiv_\Sigma w'$, if and only if for all $\beta \in \Sigma$ and all Σ-models $M := (\mathcal{F}, V, \nu)$,

$$M, w \models \beta \iff M, w' \models \beta$$

Filtration Model

- $U^f := \{[w] : w \in U\}$.
- $[w] R_i^f [w']$ if and only if there exist $w_1 \in [w]$ and $w_2 \in [w']$ such that $w_1 R_i w_2$;
- R_i^{f*} is the transitive closure of R_i^f.
- $\mathcal{F}^f := (U^f, \{R_i^{f*}\}_{1 \leq i \leq m})$.
- $V^f(p) := \{[w] \in U^f : w \in V(p)\}$.
Proof (Contd.)

Filtration Theorem

For all wffs $\beta \in \Sigma$, all assignment $\nu : \text{Var} \rightarrow \{1, 2, \ldots, m\}$ and all objects $w \in U$,

$$(\mathcal{F}, \mathcal{V}, \nu), w \models \beta \text{ iff } (\mathcal{F}^f, \mathcal{V}^f, \nu), [w] \models \alpha$$
Proof (Contd.)

Proposition

Let α be a wff such that

- $\text{Var}(\alpha) := \{x_1, x_2, \ldots, x_n\}$.
- α is satisfiable in a model $\mathcal{M} := (\mathcal{F}, V, \nu)$, where $|\mathcal{F}| = m$.
- Σ is the set of all sub-formulae of α.

Then α is satisfiable in a model with domain of cardinality $\leq 2|\Sigma| \times m^n$.

- $\text{Asg} := \{\nu \mid \nu : \text{var} \to \{1, 2, \ldots, m\}\}$.
- For $\nu_1, \nu_2 \in \text{Asg}$, $\nu_1 \approx \nu_2$ iff $\nu_1(x) = \nu_2(x)$, $x \in \text{Var}(\alpha)$.
- $|\text{Asg}/\approx| \leq m^n$.
Proof(Contd.)

- The mapping \(g : U^f \rightarrow 2^{\Sigma \times \text{Asg}/\approx} \), defined as
 \[
g([w]) := \{(\beta, [v_1]) \in \Sigma \times \text{Asg}/\approx : ((\mathcal{F}, V, v_1), w \models \beta)\}
\]
is injective.

- \(|U^f| \leq 2|\Sigma| \times m^n \)
Proposition

Given an integer t and a wff α, it is decidable if there exists an α-model with a domain of cardinality t, in which α is satisfiable.
\[R \subseteq W \times W \quad \text{and} \quad R' \subseteq W' \times W'. \quad Z \subseteq W \times W' \]

Bisimulation

\[Z : R \leftrightarrow R' \], if the following conditions are satisfied:
$R \subseteq W \times W$ and $R' \subseteq W' \times W'$. $Z \subseteq W \times W'$

Bisimulation

$Z : R \leftrightarrow R'$, if the following conditions are satisfied:
\(R \subseteq W \times W \) and \(R' \subseteq W' \times W' \). \(Z \subseteq W \times W' \)

Bisimulation

\(Z : R \leftrightarrow R' \), if the following conditions are satisfied:

\[
\begin{align*}
A & \quad w & \quad Z & \quad w' \\
R & \quad u & & \quad u'
\end{align*}
\]
$R \subseteq W \times W$ and $R' \subseteq W' \times W'$. $Z \subseteq W \times W'$

Bisimulation

$Z : R \leftrightarrow R'$, if the following conditions are satisfied:
$R \subseteq W \times W$ and $R' \subseteq W' \times W'$. $Z \subseteq W \times W'$

Bisimulation

$Z : R \leftrightarrow R'$, if the following conditions are satisfied:
\[R \subseteq W \times W \text{ and } R' \subseteq W' \times W'. \quad Z \subseteq W \times W' \]

Bisimulation

\[Z : R \leftrightarrow R', \text{ if the following conditions are satisfied:} \]

- \(R \subseteq W \times W \) and \(R' \subseteq W' \times W' \).
- \(Z \subseteq W \times W' \).
- For all \(w \in W \), if \((w, u) \in R \), then there exists \(w' \) in \(W' \) such that \((w, w') \in Z \) and \((w', u') \in R' \).
- For all \(u' \in W' \), if \((u, u') \in R' \), then there exists \(w \) in \(W \) such that \((w', w) \in Z \) and \((u', u') \in R' \).
\[C \subseteq \text{Con}, \ V^1, V^2 \subseteq \text{Var}. \]
\[\Gamma := \{ \alpha : \text{Con}(\alpha) \subseteq C, \ FV(\alpha) \subseteq V^1 \text{ and } \text{Var}(\alpha) \subseteq V^2 \}. \]

Theorem

\[\mathcal{M} := (\mathcal{F}, V, \nu) \quad \mathcal{M}' := (\mathcal{F}', V', \nu') \]
\[Z \subseteq W \times W' \]
\[C \subseteq \text{Con}, \ V^1, V^2 \subseteq \text{Var}. \]
\[\Gamma := \{ \alpha : \text{Con}(\alpha) \subseteq C, \ FV(\alpha) \subseteq V^1 \text{ and } \text{Var}(\alpha) \subseteq V^2 \}. \]

Theorem

\[M := (\mathcal{F}, V, \nu) \quad M' := (\mathcal{F}', V', \nu') \]
\[Z \subseteq W \times W' \]
$C \subseteq \text{Con}, \ V^1, V^2 \subseteq \text{Var}$.
\[\Gamma := \{ \alpha : \text{Con}(\alpha) \subseteq C, \ FV(\alpha) \subseteq V^1 \text{ and } \text{Var}(\alpha) \subseteq V^2 \} \].

Theorem

$M := (\mathcal{F}, V, v)$ \quad $M' := (\mathcal{F}', V', v')$

$Z \subseteq W \times W'$

$C \subseteq \text{Con}$, V^1, $V^2 \subseteq \text{Var}$.
\[C \subseteq Con, \ V^1, V^2 \subseteq Var. \]
\[\Gamma := \{ \alpha : Con(\alpha) \subseteq C, \ FV(\alpha) \subseteq V^1 \text{ and } Var(\alpha) \subseteq V^2 \} \].

Theorem

\[M := (\mathcal{F}, V, v) \quad M' := (\mathcal{F}', V', v') \]
\[Z \subseteq W \times W' \]

\[Z : R_i \leftrightarrow R'_i \]
\(C \subseteq \text{Con}, \ V^1, V^2 \subseteq \text{Var}. \)
\[\Gamma := \{ \alpha : \text{Con}(\alpha) \subseteq C, \ \text{FV}(\alpha) \subseteq V^1 \ \text{and} \ \text{Var}(\alpha) \subseteq V^2 \}. \]

Theorem

\[
\mathcal{M} := (\mathcal{F}, V, \nu) \quad \text{and} \quad \mathcal{M}' := (\mathcal{F}', V', \nu')
\]

\[Z \subseteq W \times W' \]

\[Z : R_i \leftrightarrow R'_i \]
\[C \subseteq \text{Con}, \ V^1, V^2 \subseteq \text{Var}. \]
\[\Gamma := \{ \alpha : \text{Con}(\alpha) \subseteq C, \ \text{FV}(\alpha) \subseteq V^1 \text{ and } \text{Var}(\alpha) \subseteq V^2 \}. \]

Theorem

\[\mathcal{M} := (\mathcal{F}, V, \nu) \quad \quad \mathcal{M}' := (\mathcal{F}', V', \nu') \]

\[Z \subseteq W \times W' \]

\[Z : R_i \leftrightarrow R'_i \]

\[R_{\nu(x)} \quad R'_{\nu'(x)} \]
$C \subseteq \text{Con}, \ V^1, V^2 \subseteq \text{Var}.$
$\Gamma := \{ \alpha : \text{Con}(\alpha) \subseteq C, \ FV(\alpha) \subseteq V^1 \text{ and } \text{Var}(\alpha) \subseteq V^2 \}. $

Theorem

$M := (\mathcal{F}, V, v) \quad M' := (\mathcal{F}', V', v')$

$Z \subseteq W \times W'$

$Z : R_i \leftrightarrow R'_i$

$Z : R_{v(x)} \leftrightarrow R'_{v'(x)}$
Mohua Banerjee, Md. Aquil Khan

A Study of a Logic for Multiple-source Approximation Systems

Proof:

\[V^2 \]

\[C \]

\[x \]

\[R_v(x) \]
A Study of a Logic for Multiple-source Approximation Systems
A Study of a Logic for Multiple-source Approximation Systems

Mohua Banerjee, Md. Aquil Khan
Mohua Banerjee, Md. Aquil Khan
A Study of a Logic for Multiple-source Approximation Systems
A Study of a Logic for Multiple-source Approximation Systems

Mohua Banerjee, Md. Aquil Khan

Outline
Basic Concepts Related to Rough Set Theory
Multiple-source Approximation Systems
Logic for MSAS(LMSAS)
Conclusion

Axiomatization
Some Decidable Problems
Bisimulation
Relationship with Other Logics

\[Z : R_v(x) \iff R'_j \]

\[R_j \iff R'_{v'}(x) \]
Mohua Banerjee, Md. Aquil Khan

A Study of a Logic for Multiple-source Approximation Systems
Mohua Banerjee, Md. Aquil Khan

A Study of a Logic for Multiple-source Approximation Systems

\[V^2 \]

\[C \]
\[x \]

\[D \]

\[Z : R_v(x) \overset{\leftrightarrow}{\rightarrow} R'_j \]

\[Z : R_j \overset{\leftrightarrow}{\rightarrow} R'_{v'(x)} \]

\[u Z u' \]
A Study of a Logic for Multiple-source Approximation Systems

\[Z : R_v(x) \iff R'_j \]

\[Z : R_j \iff R'_{v'(x)} \]

\[u \in V(p) \iff u' \in V'(p) \text{ for all } p \in V(p) \]
A Study of a Logic for Multiple-source Approximation Systems

Mohua Banerjee, Md. Aquil Khan

Mohua Banerjee, Md. Aquil Khan
Then for all \(\alpha \in \Gamma \),

\[
M, w \models \alpha \iff M', w' \models \alpha.
\]
\(C \subseteq \text{Con}, \ V^2 \subseteq \text{Var}. \)

\[\Gamma := \{ \alpha : \text{Con}(\alpha) \subseteq C, \ \text{Var}(\alpha) \subseteq V^2 \}. \]

Corollary(\(*\))

1. \(\mathcal{M} := (\mathcal{F}, V, \nu) \) and \(\mathcal{M}^\prime := (\mathcal{F}^\prime, V^\prime, \nu^\prime) \), where
 \[\mathcal{F} := (W, \{ R_i \}_{i \in N}), \ \mathcal{F}^\prime := (W^\prime, \{ R_i^\prime \}_{i \in N^\prime}) \] be two \(\Gamma \)-models.
2. \(Z \subseteq W \times W^\prime \) satisfying the following:
 a. \(Z : R_i \leftrightarrow R_i^\prime \) for all \(i \) such that \(c_i \in C \);
 b. \(Z : R_{\nu(x)} \leftrightarrow R_{\nu'(x)}^\prime \) for all \(x \in V^2 \);
 c. If \(uZu^\prime \), then \(u \in V(p) \) if and only if \(u^\prime \in V'(p) \) for all \(p \in PV \);
 d. \(wZw^\prime \).

Then for all \(\alpha \in \Gamma \),

\[\mathcal{M}, w \models \alpha \iff \mathcal{M}^\prime, w^\prime \models \alpha. \]
Converse of Corollary (*)?

Let $C \subseteq \text{Con}$, $V^1 \subseteq \text{Var}$. Let $\Gamma := \{ \alpha : \text{Con}(\alpha) \subseteq C, \text{Var}(\alpha) \subseteq V^1 \}$

Theorem

1. $\mathcal{M} := (\mathcal{F}, V, v)$ and $\mathcal{M}' := (\mathcal{F}', V', v')$, where $\mathcal{F} := (W, \{ R_i \}_{i \in N})$, $\mathcal{F}' := (W', \{ R'_i \}_{i \in N'})$, be two Γ-models.

2. Equivalence classes of the relations R_i, R'_i for $c_i \in C$ and $R_v(x), R'_v(x)$, $x \in V^1$ are all finite.

3. $w \in W$ and $w' \in W'$ such that $\mathcal{M}, w \models \alpha \iff \mathcal{M}', w' \models \alpha$ for all $\alpha \in \Gamma$.
Then there exists a relation $Z \subseteq W \times W'$ satisfying the following:

a. $Z : R_i \leftrightarrow R'_i$ for all i such that $c_i \in C$;

b. $Z : R_{v(x)} \leftrightarrow R'_{v'(x)}$ for all $x \in V^1$;

c. If uZu', then $u \in V(p)$ if and only if $u' \in V'(p)$ for all $p \in PV$;

d. wZw'.

- Result does not hold if condition (2) is removed.
$P \subseteq_{f} PV$ and α be a wff which involves only the propositional variables from the set P.

Proposition

\[M := (\mathcal{F}, V, v) \quad M' := (\mathcal{F}', V', v') \]

\[f : W \rightarrow W' \text{ (Surjective)} \]
$P \subseteq_f PV$ and α be a wff which involves only the propositional variables from the set P.

Proposition

$$M := (\mathcal{F}, V, \nu) \quad M' := (\mathcal{F}', V', \nu')$$

$$f : W \rightarrow W' \text{ (Surjective)}$$
$P \subseteq_f PV$ and α be a wff which involves only the propositional variables from the set P.

Proposition

\[
\mathcal{M} := (\mathcal{F}, V, \nu) \quad \quad \mathcal{M}' := (\mathcal{F}', V', \nu')
\]

\[
f : W \rightarrow W' \text{ (Surjective)}
\]

\[
Con(\alpha) \\
A \quad c_i \\
\quad \quad s \: R_i \: r \Leftrightarrow f(s) \: R' \: f(r)
\]
$P \subseteq_{f} PV$ and α be a wff which involves only the propositional variables from the set P.

<table>
<thead>
<tr>
<th>Proposition</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\mathcal{M} := (\mathcal{F}, V, v)$</td>
</tr>
<tr>
<td>$f : W \rightarrow W'$ (Surjective)</td>
</tr>
</tbody>
</table>

Con(α)

- $s R_i r \iff f(s) R' f(r)$

FV(α)

- A
 - c_i
- B
 - x
$P \subseteq_f PV$ and α be a wff which involves only the propositional variables from the set P.

\[M := (\mathcal{F}, V, \nu) \quad M' := (\mathcal{F}', V', \nu') \]

\[f : W \rightarrow W' \text{ (Surjective)} \]

\[\text{Con}(\alpha) \]

\[s \ R_i \ r \iff f(s) \ R' \ f(r) \]

\[FV(\alpha) \]

\[s \ R_{v(x)} \ r \iff f(s) \ R'_{v'(x)} \ f(r) \]
Then we have,

\[M, w \models \alpha \iff M', w' \models \alpha. \]
Then we have,

\[M, w \models \alpha \iff M', w' \models \alpha. \]
Then we have,

\[M, w \models \alpha \iff M', w' \models \alpha. \]
Then we have,

$$\mathcal{M}, w \models \alpha \Leftrightarrow \mathcal{M}', w' \models \alpha.$$
Then we have,

\[M, w \models \alpha \iff M', w' \models \alpha. \]
Then we have,

\[\mathcal{M}, w \models \alpha \iff \mathcal{M}', w' \models \alpha. \]
Then we have,

\[M, w \models \alpha \iff M', w' \models \alpha. \]
Mohua Banerjee, Md. Aquil Khan

A Study of a Logic for Multiple-source Approximation Systems

Then we have,

\(M, w \models \alpha \iff M', w' \models \alpha. \)
Example

\[W := \{w_i : i \in \mathbb{N}\} \cup \{w, d\} \]
\[U := \{u_i : i \in \mathbb{N}\} \cup \{u\} \]
\[R_i = W \times W \]
\[R'_i = U \times U \]
\[V(p_j) := W \setminus \{w, w_j\} \]
\[V(p_j) := U \setminus \{u, u_j\} \]

Obs 1: \(d \in V(p) \) for all \(p \in PV \).

Obs 2: For each \(P \subseteq_f PV \), there exists a \(t \in U \) such that \(t \in V'(p) \) for all \(p \in P \).

Claim 1: \(M, w \models \alpha \iff M', u \models \alpha \) for all \(\alpha \).

- \(P = \{p_{j_1}, p_{j_1}, \ldots, p_{j_n}\} \) consists of propositional variables which occurs in \(\alpha \).
- \(f(d) = u_{j_n+1}, f(w) = u, f(w_i) = u_i \).
- Use previous result.
Obs3: There is no $t \in U$ such that $t \in V'(p)$ for all $p \in PV$.

Claim 2: There is Z satisfying (a)-(d).

- If possible, let there exists such a Z
- wRu and wZu.
- There exists $t \in U$ such that dZt.
- $t \in V'(p)$ for all $p \in PV$.
Bisimulation Invariance Result and the Hennessy-Milner Theorem for S_5

- $\Gamma := \{ \alpha : \text{Con}(\alpha) \subseteq \{c_1\}, \text{Var}(\alpha) = \emptyset \}$ corresponds to the set of all wffs of a normal modal logic, where $[c_1]$ and $\langle c_1 \rangle$ are considered as \Box and \Diamond respectively.

- $\Phi : (W, \{R_i\}_{i \in \mathbb{N}}) \mapsto (W, R_1)$ (**Surjective**).

- $(\mathcal{F}, V, v), w \vDash \alpha$ if and only if $(\Phi(\mathcal{F}), V), w \vDash_{S_5} \alpha$, for all $\alpha \in \Gamma$.

- From this observation and choice of Γ, we obtain the bisimulation invariance result and the Hennessy-Milner theorem for S_5.
Proposition

- $S5 \rightarrow LMSAS$.
- $K_n \rightarrow LMSAS$.
- $LMSAS \rightarrow SOL$.
- $B \rightarrow LMSAS$.

Proof

- Let L be the set of basic modal logic wffs with modal operator L.
- Choose a variable x and fix it.
- $T_B : L \rightarrow \mathcal{L}$ be the translation such that:
 \[T_B(L\alpha) = \forall x[x] T_B(\alpha). \]
Proof (Contd.)

Proposition

$\alpha \in L$ is satisfiable in a reflexive, symmetric model if and only if $T_B(\alpha)$ is a satisfiable LMSAS wff.

- $\mathfrak{F} := (W, \{R_i\}_{i \in N})$, $\mathfrak{F}^* := (W, R := \bigcup_i R_i)$, where R is reflexive and symmetric.

- $(\mathfrak{F}, V, v), w \models T_B(\alpha)$ iff $(\mathfrak{F}^*, V), w \models \alpha$

- Given reflexive and symmetric frame (W, R) with finite domain, there exists MSAS \mathfrak{F} such that $\mathfrak{F}^* = (W, R)$.

Mohua Banerjee, Md. Aquil Khan

A Study of a Logic for Multiple-source Approximation Systems
Decidability?

1. There exists a function f such that if α is satisfiable, then it is satisfiable in a model based on a MSAS \mathcal{F} with $|\mathcal{F}| \leq f(|\alpha|)$.

2. There exists a function f such that if α is satisfiable, then it is satisfiable in a model with finite domain W such that $|W| \leq f(|\alpha|)$.

LMSAS corresponds to which fragment of SOL?

Extension of LMSAS to capture the group knowledge of the sources.
Thank you